39 lines
1 KiB
Nix
39 lines
1 KiB
Nix
|
{ stdenv, fetchurl, unzip, gcc48 }:
|
||
|
|
||
|
stdenv.mkDerivation {
|
||
|
name = "perseus-4-beta";
|
||
|
version = "4-beta";
|
||
|
buildInputs = [unzip gcc48];
|
||
|
|
||
|
src = fetchurl {
|
||
|
url = "http://www.sas.upenn.edu/~vnanda/source/perseus_4_beta.zip";
|
||
|
sha256 = "09brijnqabhgfjlj5wny0bqm5dwqcfkp1x5wif6yzdmqh080jybj";
|
||
|
};
|
||
|
|
||
|
sourceRoot = ".";
|
||
|
|
||
|
buildPhase = ''
|
||
|
g++ Pers.cpp -O3 -o perseus
|
||
|
'';
|
||
|
|
||
|
installPhase = ''
|
||
|
mkdir -p $out/bin
|
||
|
cp perseus $out/bin
|
||
|
'';
|
||
|
|
||
|
meta = {
|
||
|
description = "The Persistent Homology Software";
|
||
|
longDescription = ''
|
||
|
Persistent homology - or simply, persistence - is an algebraic
|
||
|
topological invariant of a filtered cell complex. Perseus
|
||
|
computes this invariant for a wide class of filtrations built
|
||
|
around datasets arising from point samples, images, distance
|
||
|
matrices and so forth.
|
||
|
'';
|
||
|
homepage = "www.sas.upenn.edu/~vnanda/perseus/index.html";
|
||
|
license = stdenv.lib.licenses.gpl3;
|
||
|
maintainers = with stdenv.lib.maintainers; [erikryb];
|
||
|
platforms = stdenv.lib.platforms.linux;
|
||
|
};
|
||
|
}
|