* jq: 1.5 -> 1.6 (!!)
(last release was in 2015! :))
* jq: drop darwin patch, appears resolved by upgrade
commit history isn't that long, and has a few addressing
behavior on osx re:strptime-- and since this patch
doesn't apply it seems likely it's been resolved
but probably can be checked by any interested folks w/darwin.
I originally thought it would just be enough to just check for an INTERP
section in isExecutable, however this would mean that we don't detect
statically linked ELF files, which would break our recent improvement to
gracefully handle those.
In theory, we are only interested in ELF files that have an INTERP
section, so checking for INTERP would be enough. Unfortunately the
isExecutable function is already used outside of autoPatchelfHook, so we
can't easily get rid of it now, so let's actually strive for more
correctness and make isExecutable actually match ELF files that are
executable.
So what we're doing instead now is to check whether either the ELF type
is EXEC *or* we have an INTERP section and if one of them is true we
should have an ELF executable, even if it's statically linked.
Along the way I also set LANG=C for the invocations of readelf, just to
be sure we don't get locale-dependent output.
Tested this with the following command (which contains almost[1] all the
packages using autoPatchelfHook), checking whether we run into any
library-related errors:
nix-build -E 'with import ./. { config.allowUnfree = true; };
runCommand "test-executables" {
drvs = [
anydesk cups-kyodialog3 elasticsearch franz gurobi
masterpdfeditor oracle-instantclient powershell reaper
sourcetrail teamviewer unixODBCDrivers.msodbcsql17 virtlyst
vk-messenger wavebox zoom-us
];
} ("for i in $drvs; do for b in $i/bin/*; do " +
"[ -x \"$b\" ] && timeout 10 \"$b\" || :; done; done")
'
Apart from testing against library-related errors I also compared the
resulting store paths against the ones prior to this commit. Only
anydesk and virtlyst had the same as they didn't have self-references,
everything else differed only because of self-references, except
elasticsearch, which had the following PIE binaries:
* modules/x-pack/x-pack-ml/platform/linux-x86_64/bin/autoconfig
* modules/x-pack/x-pack-ml/platform/linux-x86_64/bin/autodetect
* modules/x-pack/x-pack-ml/platform/linux-x86_64/bin/categorize
* modules/x-pack/x-pack-ml/platform/linux-x86_64/bin/controller
* modules/x-pack/x-pack-ml/platform/linux-x86_64/bin/normalize
These binaries were now patched, which is what this commit is all about.
[1]: I didn't include the "maxx" package (MaXX Interactive Desktop)
because the upstream URLs are no longer existing and I couldn't
find them elsewhere on the web.
Signed-off-by: aszlig <aszlig@nix.build>
Fixes: https://github.com/NixOS/nixpkgs/issues/48330
Cc: @gnidorah (for MaXX Interactive Desktop)
SSRF in Kubernetes integration
The GitLab Kubernetes integration was vulnerable to a SSRF issue which could allow an attacker to make requests to access any internal URLs. The issue is now mitigated in the latest release and is assigned CVE-2018-18843.
When strictDeps = true, we don’t want native build inputs to end up in
the output. For instance gcc is a builtin native build input and
should only show up in an output if it is also listed in buildInputs.
/cc @ericson2314
This module permits to preload Docker image in a VM in order to reduce
OIs on file copies. This module has to be only used in testing
environments, when the test requires several Docker images such as in
Kubernetes tests. In this case,
`virtualisation.dockerPreloader.images` can replace the
`services.kubernetes.kubelet.seedDockerImages` options.
The idea is to populate the /var/lib/docker directory by mounting qcow
files (we uses qcow file to avoid permission issues) that contain images.
For each image specified in
config.virtualisation.dockerPreloader.images:
1. The image is loaded by Docker in a VM
2. The resulting /var/lib/docker is written to a QCOW file
This set of QCOW files can then be used to populate the
/var/lib/docker:
1. Each QCOW is mounted in the VM
2. Symlink are created from these mount points to /var/lib/docker
3. A /var/lib/docker/image/overlay2/repositories.json file is generated
4. The docker daemon is started.