Since at least d7bddc27b2, we've had a
situation where one should depend on:
- `stdenv.cc.bintools`: for executables at build time
- `libbfd` or `libiberty`: for those libraries
- `targetPackages.cc.bintools`: for exectuables at *run* time
- `binutils`: only for specifically GNU Binutils's executables,
regardless of the host platform, at run time.
and that commit cleaned up this usage to reflect that. This PR flips the
switch so that:
- `binutils` is indeed unconditionally GNU Binutils
- `binutils-raw`, which previously served that role, is gone.
so that the correct usage will be enforced going forward and everything
is simple.
N.B. In a few cases `binutils-unwrapped` (which before and now was
unconditionally actual GNU binutils), rather than `binutils` was used to
replace old `binutils-raw` as it is friendly towards some cross
compilation usage by avoiding a reference to the next bootstrapping
change.
For the cc of the intermediate stages, to be precise. Doing the same for
bintools requires lots of refactoring.
This is mainly for the future extensibility as now you can change
documentation generation with impunity without rebuilding the
whole of stdenv.
stdenvNoCC should not inject any C++ standard library, just as it
doesn't inject any C standard library. stdenv still does, but only
indirectly through stdenv.cc. Wrapped clangs can be simplified now that
they don't need to worry about clobbering CoreFoundation when replacing
the C++ standard library implementation.
This generally-good cleanup should assist with debugging some C++
failures in #26805.
cc-wrapper may wrap a cc-compiler, but it doesn't need one to build
itself. (c.f. expand-response-params is a separate derivation.) This
helps avoid cycles on the cross stuff, in addition to removing a
useless dependency edge.
I could have been super careful with overrides in the stdenv to avoid
the mass rebuild, but I don't think it's worth it.
This reverts commit 0a944b345e, reversing
changes made to 61733ed6cc.
I dislike these massive stdenv changes with unclear motivation,
especially when they involve gratuitous mass renames like NIX_CC ->
NIX_BINUTILS. The previous such rename (NIX_GCC -> NIX_CC) caused
months of pain, so let's not do that again.
This reverts commit eeabf85780.
This change suddenly makes tons of stdenv internals visible in
nativeBuildInputs of every derivation, which doesn't seem desirable.
E.g:
````
nix-repl> hello.nativeBuildInputs
[ «derivation /nix/store/bcfkyf6bhssxd2vzwgzmsbn7b5b9rpxc-patchelf-0.9.drv»
«derivation /nix/store/4wnshnz9wwanpfzcrdd76rri7pyqn9sk-paxctl-0.9.drv»
<< snip 10+ lines >>
«derivation /nix/store/d35pgh1lcg5nm0x28d899pxj30b8c9b2-gcc-wrapper-6.4.0.drv»
]
````
Additionally, instead of pulling them from `setup.sh`, route them via
Nix. This gets us one step closer to making stdenv be a plain attribute
set instead of a derivation.
The logic was made pure for the normal libSystem, but this change never
made it to the bootstrap tools. Deduplication the logic as the comment
suggests would have prevented this, but here's a stop-gap until we do
so.
The main changes are in libSystem, which lost the coretls component in 10.13
and some hardening changes that quietly crash any program that uses %n in
a non-constant format string, so we've needed to patch a lot of programs that
use gnulib.
Before all overrides were also pruned in the previous stage, now
only gcc and binutils are, because they alone care about about the
target platform. The rest of the overrides don't, so it's better to
preserve them in order to avoid spurious rebuilds.
The long term goal is a big replace:
{ inherit system platform; } => buildPlatform
crossSystem => hostPlatform
stdenv.cross => targetPlatform
And additionally making sure each is defined even when not cross compiling.
This commit refactors the bootstrapping code along that vision, but leaves
the old identifiers with their null semantics in place so packages can be
modernized incrementally.