4d545297d8
* lib: introduce imap0, imap1
For historical reasons, imap starts counting at 1 and it's not
consistent with the rest of the lib.
So for now we split imap into imap0 that starts counting at zero and
imap1 that starts counting at 1. And imap is marked as deprecated.
See c71e2d4235 (commitcomment-21873221)
* replace uses of lib.imap
* lib: move imap to deprecated.nix
480 lines
13 KiB
Nix
480 lines
13 KiB
Nix
# General list operations.
|
||
|
||
with import ./trivial.nix;
|
||
|
||
rec {
|
||
|
||
inherit (builtins) head tail length isList elemAt concatLists filter elem genList;
|
||
|
||
/* Create a list consisting of a single element. `singleton x' is
|
||
sometimes more convenient with respect to indentation than `[x]'
|
||
when x spans multiple lines.
|
||
|
||
Example:
|
||
singleton "foo"
|
||
=> [ "foo" ]
|
||
*/
|
||
singleton = x: [x];
|
||
|
||
/* “right fold” a binary function `op' between successive elements of
|
||
`list' with `nul' as the starting value, i.e.,
|
||
`foldr op nul [x_1 x_2 ... x_n] == op x_1 (op x_2 ... (op x_n nul))'.
|
||
Type:
|
||
foldr :: (a -> b -> b) -> b -> [a] -> b
|
||
|
||
Example:
|
||
concat = foldr (a: b: a + b) "z"
|
||
concat [ "a" "b" "c" ]
|
||
=> "abcz"
|
||
# different types
|
||
strange = foldr (int: str: toString (int + 1) + str) "a"
|
||
strange [ 1 2 3 4 ]
|
||
=> "2345a"
|
||
*/
|
||
foldr = op: nul: list:
|
||
let
|
||
len = length list;
|
||
fold' = n:
|
||
if n == len
|
||
then nul
|
||
else op (elemAt list n) (fold' (n + 1));
|
||
in fold' 0;
|
||
|
||
/* `fold' is an alias of `foldr' for historic reasons */
|
||
# FIXME(Profpatsch): deprecate?
|
||
fold = foldr;
|
||
|
||
|
||
/* “left fold”, like `foldr', but from the left:
|
||
`foldl op nul [x_1 x_2 ... x_n] == op (... (op (op nul x_1) x_2) ... x_n)`.
|
||
|
||
Type:
|
||
foldl :: (b -> a -> b) -> b -> [a] -> b
|
||
|
||
Example:
|
||
lconcat = foldl (a: b: a + b) "z"
|
||
lconcat [ "a" "b" "c" ]
|
||
=> "zabc"
|
||
# different types
|
||
lstrange = foldl (str: int: str + toString (int + 1)) ""
|
||
strange [ 1 2 3 4 ]
|
||
=> "a2345"
|
||
*/
|
||
foldl = op: nul: list:
|
||
let
|
||
len = length list;
|
||
foldl' = n:
|
||
if n == -1
|
||
then nul
|
||
else op (foldl' (n - 1)) (elemAt list n);
|
||
in foldl' (length list - 1);
|
||
|
||
/* Strict version of `foldl'.
|
||
|
||
The difference is that evaluation is forced upon access. Usually used
|
||
with small whole results (in contract with lazily-generated list or large
|
||
lists where only a part is consumed.)
|
||
*/
|
||
foldl' = builtins.foldl' or foldl;
|
||
|
||
/* Map with index starting from 0
|
||
|
||
Example:
|
||
imap0 (i: v: "${v}-${toString i}") ["a" "b"]
|
||
=> [ "a-0" "b-1" ]
|
||
*/
|
||
imap0 = f: list: genList (n: f n (elemAt list n)) (length list);
|
||
|
||
/* Map with index starting from 1
|
||
|
||
Example:
|
||
imap1 (i: v: "${v}-${toString i}") ["a" "b"]
|
||
=> [ "a-1" "b-2" ]
|
||
*/
|
||
imap1 = f: list: genList (n: f (n + 1) (elemAt list n)) (length list);
|
||
|
||
/* Map and concatenate the result.
|
||
|
||
Example:
|
||
concatMap (x: [x] ++ ["z"]) ["a" "b"]
|
||
=> [ "a" "z" "b" "z" ]
|
||
*/
|
||
concatMap = f: list: concatLists (map f list);
|
||
|
||
/* Flatten the argument into a single list; that is, nested lists are
|
||
spliced into the top-level lists.
|
||
|
||
Example:
|
||
flatten [1 [2 [3] 4] 5]
|
||
=> [1 2 3 4 5]
|
||
flatten 1
|
||
=> [1]
|
||
*/
|
||
flatten = x:
|
||
if isList x
|
||
then concatMap (y: flatten y) x
|
||
else [x];
|
||
|
||
/* Remove elements equal to 'e' from a list. Useful for buildInputs.
|
||
|
||
Example:
|
||
remove 3 [ 1 3 4 3 ]
|
||
=> [ 1 4 ]
|
||
*/
|
||
remove = e: filter (x: x != e);
|
||
|
||
/* Find the sole element in the list matching the specified
|
||
predicate, returns `default' if no such element exists, or
|
||
`multiple' if there are multiple matching elements.
|
||
|
||
Example:
|
||
findSingle (x: x == 3) "none" "multiple" [ 1 3 3 ]
|
||
=> "multiple"
|
||
findSingle (x: x == 3) "none" "multiple" [ 1 3 ]
|
||
=> 3
|
||
findSingle (x: x == 3) "none" "multiple" [ 1 9 ]
|
||
=> "none"
|
||
*/
|
||
findSingle = pred: default: multiple: list:
|
||
let found = filter pred list; len = length found;
|
||
in if len == 0 then default
|
||
else if len != 1 then multiple
|
||
else head found;
|
||
|
||
/* Find the first element in the list matching the specified
|
||
predicate or returns `default' if no such element exists.
|
||
|
||
Example:
|
||
findFirst (x: x > 3) 7 [ 1 6 4 ]
|
||
=> 6
|
||
findFirst (x: x > 9) 7 [ 1 6 4 ]
|
||
=> 7
|
||
*/
|
||
findFirst = pred: default: list:
|
||
let found = filter pred list;
|
||
in if found == [] then default else head found;
|
||
|
||
/* Return true iff function `pred' returns true for at least element
|
||
of `list'.
|
||
|
||
Example:
|
||
any isString [ 1 "a" { } ]
|
||
=> true
|
||
any isString [ 1 { } ]
|
||
=> false
|
||
*/
|
||
any = builtins.any or (pred: foldr (x: y: if pred x then true else y) false);
|
||
|
||
/* Return true iff function `pred' returns true for all elements of
|
||
`list'.
|
||
|
||
Example:
|
||
all (x: x < 3) [ 1 2 ]
|
||
=> true
|
||
all (x: x < 3) [ 1 2 3 ]
|
||
=> false
|
||
*/
|
||
all = builtins.all or (pred: foldr (x: y: if pred x then y else false) true);
|
||
|
||
/* Count how many times function `pred' returns true for the elements
|
||
of `list'.
|
||
|
||
Example:
|
||
count (x: x == 3) [ 3 2 3 4 6 ]
|
||
=> 2
|
||
*/
|
||
count = pred: foldl' (c: x: if pred x then c + 1 else c) 0;
|
||
|
||
/* Return a singleton list or an empty list, depending on a boolean
|
||
value. Useful when building lists with optional elements
|
||
(e.g. `++ optional (system == "i686-linux") flashplayer').
|
||
|
||
Example:
|
||
optional true "foo"
|
||
=> [ "foo" ]
|
||
optional false "foo"
|
||
=> [ ]
|
||
*/
|
||
optional = cond: elem: if cond then [elem] else [];
|
||
|
||
/* Return a list or an empty list, depending on a boolean value.
|
||
|
||
Example:
|
||
optionals true [ 2 3 ]
|
||
=> [ 2 3 ]
|
||
optionals false [ 2 3 ]
|
||
=> [ ]
|
||
*/
|
||
optionals = cond: elems: if cond then elems else [];
|
||
|
||
|
||
/* If argument is a list, return it; else, wrap it in a singleton
|
||
list. If you're using this, you should almost certainly
|
||
reconsider if there isn't a more "well-typed" approach.
|
||
|
||
Example:
|
||
toList [ 1 2 ]
|
||
=> [ 1 2 ]
|
||
toList "hi"
|
||
=> [ "hi "]
|
||
*/
|
||
toList = x: if isList x then x else [x];
|
||
|
||
/* Return a list of integers from `first' up to and including `last'.
|
||
|
||
Example:
|
||
range 2 4
|
||
=> [ 2 3 4 ]
|
||
range 3 2
|
||
=> [ ]
|
||
*/
|
||
range = first: last:
|
||
if first > last then
|
||
[]
|
||
else
|
||
genList (n: first + n) (last - first + 1);
|
||
|
||
/* Splits the elements of a list in two lists, `right' and
|
||
`wrong', depending on the evaluation of a predicate.
|
||
|
||
Example:
|
||
partition (x: x > 2) [ 5 1 2 3 4 ]
|
||
=> { right = [ 5 3 4 ]; wrong = [ 1 2 ]; }
|
||
*/
|
||
partition = builtins.partition or (pred:
|
||
foldr (h: t:
|
||
if pred h
|
||
then { right = [h] ++ t.right; wrong = t.wrong; }
|
||
else { right = t.right; wrong = [h] ++ t.wrong; }
|
||
) { right = []; wrong = []; });
|
||
|
||
/* Merges two lists of the same size together. If the sizes aren't the same
|
||
the merging stops at the shortest. How both lists are merged is defined
|
||
by the first argument.
|
||
|
||
Example:
|
||
zipListsWith (a: b: a + b) ["h" "l"] ["e" "o"]
|
||
=> ["he" "lo"]
|
||
*/
|
||
zipListsWith = f: fst: snd:
|
||
genList
|
||
(n: f (elemAt fst n) (elemAt snd n)) (min (length fst) (length snd));
|
||
|
||
/* Merges two lists of the same size together. If the sizes aren't the same
|
||
the merging stops at the shortest.
|
||
|
||
Example:
|
||
zipLists [ 1 2 ] [ "a" "b" ]
|
||
=> [ { fst = 1; snd = "a"; } { fst = 2; snd = "b"; } ]
|
||
*/
|
||
zipLists = zipListsWith (fst: snd: { inherit fst snd; });
|
||
|
||
/* Reverse the order of the elements of a list.
|
||
|
||
Example:
|
||
|
||
reverseList [ "b" "o" "j" ]
|
||
=> [ "j" "o" "b" ]
|
||
*/
|
||
reverseList = xs:
|
||
let l = length xs; in genList (n: elemAt xs (l - n - 1)) l;
|
||
|
||
/* Depth-First Search (DFS) for lists `list != []`.
|
||
|
||
`before a b == true` means that `b` depends on `a` (there's an
|
||
edge from `b` to `a`).
|
||
|
||
Examples:
|
||
|
||
listDfs true hasPrefix [ "/home/user" "other" "/" "/home" ]
|
||
== { minimal = "/"; # minimal element
|
||
visited = [ "/home/user" ]; # seen elements (in reverse order)
|
||
rest = [ "/home" "other" ]; # everything else
|
||
}
|
||
|
||
listDfs true hasPrefix [ "/home/user" "other" "/" "/home" "/" ]
|
||
== { cycle = "/"; # cycle encountered at this element
|
||
loops = [ "/" ]; # and continues to these elements
|
||
visited = [ "/" "/home/user" ]; # elements leading to the cycle (in reverse order)
|
||
rest = [ "/home" "other" ]; # everything else
|
||
|
||
*/
|
||
|
||
listDfs = stopOnCycles: before: list:
|
||
let
|
||
dfs' = us: visited: rest:
|
||
let
|
||
c = filter (x: before x us) visited;
|
||
b = partition (x: before x us) rest;
|
||
in if stopOnCycles && (length c > 0)
|
||
then { cycle = us; loops = c; inherit visited rest; }
|
||
else if length b.right == 0
|
||
then # nothing is before us
|
||
{ minimal = us; inherit visited rest; }
|
||
else # grab the first one before us and continue
|
||
dfs' (head b.right)
|
||
([ us ] ++ visited)
|
||
(tail b.right ++ b.wrong);
|
||
in dfs' (head list) [] (tail list);
|
||
|
||
/* Sort a list based on a partial ordering using DFS. This
|
||
implementation is O(N^2), if your ordering is linear, use `sort`
|
||
instead.
|
||
|
||
`before a b == true` means that `b` should be after `a`
|
||
in the result.
|
||
|
||
Examples:
|
||
|
||
toposort hasPrefix [ "/home/user" "other" "/" "/home" ]
|
||
== { result = [ "/" "/home" "/home/user" "other" ]; }
|
||
|
||
toposort hasPrefix [ "/home/user" "other" "/" "/home" "/" ]
|
||
== { cycle = [ "/home/user" "/" "/" ]; # path leading to a cycle
|
||
loops = [ "/" ]; } # loops back to these elements
|
||
|
||
toposort hasPrefix [ "other" "/home/user" "/home" "/" ]
|
||
== { result = [ "other" "/" "/home" "/home/user" ]; }
|
||
|
||
toposort (a: b: a < b) [ 3 2 1 ] == { result = [ 1 2 3 ]; }
|
||
|
||
*/
|
||
|
||
toposort = before: list:
|
||
let
|
||
dfsthis = listDfs true before list;
|
||
toporest = toposort before (dfsthis.visited ++ dfsthis.rest);
|
||
in
|
||
if length list < 2
|
||
then # finish
|
||
{ result = list; }
|
||
else if dfsthis ? "cycle"
|
||
then # there's a cycle, starting from the current vertex, return it
|
||
{ cycle = reverseList ([ dfsthis.cycle ] ++ dfsthis.visited);
|
||
inherit (dfsthis) loops; }
|
||
else if toporest ? "cycle"
|
||
then # there's a cycle somewhere else in the graph, return it
|
||
toporest
|
||
# Slow, but short. Can be made a bit faster with an explicit stack.
|
||
else # there are no cycles
|
||
{ result = [ dfsthis.minimal ] ++ toporest.result; };
|
||
|
||
/* Sort a list based on a comparator function which compares two
|
||
elements and returns true if the first argument is strictly below
|
||
the second argument. The returned list is sorted in an increasing
|
||
order. The implementation does a quick-sort.
|
||
|
||
Example:
|
||
sort (a: b: a < b) [ 5 3 7 ]
|
||
=> [ 3 5 7 ]
|
||
*/
|
||
sort = builtins.sort or (
|
||
strictLess: list:
|
||
let
|
||
len = length list;
|
||
first = head list;
|
||
pivot' = n: acc@{ left, right }: let el = elemAt list n; next = pivot' (n + 1); in
|
||
if n == len
|
||
then acc
|
||
else if strictLess first el
|
||
then next { inherit left; right = [ el ] ++ right; }
|
||
else
|
||
next { left = [ el ] ++ left; inherit right; };
|
||
pivot = pivot' 1 { left = []; right = []; };
|
||
in
|
||
if len < 2 then list
|
||
else (sort strictLess pivot.left) ++ [ first ] ++ (sort strictLess pivot.right));
|
||
|
||
/* Return the first (at most) N elements of a list.
|
||
|
||
Example:
|
||
take 2 [ "a" "b" "c" "d" ]
|
||
=> [ "a" "b" ]
|
||
take 2 [ ]
|
||
=> [ ]
|
||
*/
|
||
take = count: sublist 0 count;
|
||
|
||
/* Remove the first (at most) N elements of a list.
|
||
|
||
Example:
|
||
drop 2 [ "a" "b" "c" "d" ]
|
||
=> [ "c" "d" ]
|
||
drop 2 [ ]
|
||
=> [ ]
|
||
*/
|
||
drop = count: list: sublist count (length list) list;
|
||
|
||
/* Return a list consisting of at most ‘count’ elements of ‘list’,
|
||
starting at index ‘start’.
|
||
|
||
Example:
|
||
sublist 1 3 [ "a" "b" "c" "d" "e" ]
|
||
=> [ "b" "c" "d" ]
|
||
sublist 1 3 [ ]
|
||
=> [ ]
|
||
*/
|
||
sublist = start: count: list:
|
||
let len = length list; in
|
||
genList
|
||
(n: elemAt list (n + start))
|
||
(if start >= len then 0
|
||
else if start + count > len then len - start
|
||
else count);
|
||
|
||
/* Return the last element of a list.
|
||
|
||
Example:
|
||
last [ 1 2 3 ]
|
||
=> 3
|
||
*/
|
||
last = list:
|
||
assert list != []; elemAt list (length list - 1);
|
||
|
||
/* Return all elements but the last
|
||
|
||
Example:
|
||
init [ 1 2 3 ]
|
||
=> [ 1 2 ]
|
||
*/
|
||
init = list: assert list != []; take (length list - 1) list;
|
||
|
||
|
||
/* FIXME(zimbatm) Not used anywhere
|
||
*/
|
||
crossLists = f: foldl (fs: args: concatMap (f: map f args) fs) [f];
|
||
|
||
|
||
/* Remove duplicate elements from the list. O(n^2) complexity.
|
||
|
||
Example:
|
||
|
||
unique [ 3 2 3 4 ]
|
||
=> [ 3 2 4 ]
|
||
*/
|
||
unique = list:
|
||
if list == [] then
|
||
[]
|
||
else
|
||
let
|
||
x = head list;
|
||
xs = unique (drop 1 list);
|
||
in [x] ++ remove x xs;
|
||
|
||
/* Intersects list 'e' and another list. O(nm) complexity.
|
||
|
||
Example:
|
||
intersectLists [ 1 2 3 ] [ 6 3 2 ]
|
||
=> [ 3 2 ]
|
||
*/
|
||
intersectLists = e: filter (x: elem x e);
|
||
|
||
/* Subtracts list 'e' from another list. O(nm) complexity.
|
||
|
||
Example:
|
||
subtractLists [ 3 2 ] [ 1 2 3 4 5 3 ]
|
||
=> [ 1 4 5 ]
|
||
*/
|
||
subtractLists = e: filter (x: !(elem x e));
|
||
|
||
}
|