nixpkgs/pkgs/development/python-modules/tensorflow/default.nix
2018-04-05 15:00:18 +03:00

155 lines
4.9 KiB
Nix

{ stdenv, buildBazelPackage, lib, fetchFromGitHub, fetchpatch, symlinkJoin
, buildPythonPackage, isPy3k, pythonOlder, pythonAtLeast
, which, swig, binutils, glibcLocales
, python, jemalloc, openmpi
, numpy, six, protobuf, tensorflow-tensorboard, backports_weakref, mock, enum34, absl-py
, cudaSupport ? false, nvidia_x11 ? null, cudatoolkit ? null, cudnn ? null
# XLA without CUDA is broken
, xlaSupport ? cudaSupport
# Default from ./configure script
, cudaCapabilities ? [ "3.5" "5.2" ]
, sse42Support ? false
, avx2Support ? false
, fmaSupport ? false
}:
assert cudaSupport -> nvidia_x11 != null
&& cudatoolkit != null
&& cudnn != null;
# unsupported combination
assert ! (stdenv.isDarwin && cudaSupport);
let
withTensorboard = pythonOlder "3.6";
cudatoolkit_joined = symlinkJoin {
name = "${cudatoolkit.name}-unsplit";
paths = [ cudatoolkit.out cudatoolkit.lib ];
};
tfFeature = x: if x then "1" else "0";
version = "1.5.0";
pkg = buildBazelPackage rec {
name = "tensorflow-build-${version}";
src = fetchFromGitHub {
owner = "tensorflow";
repo = "tensorflow";
rev = "v${version}";
sha256 = "1c4djsaip901nasm7a6dsimr02bsv70a7b1g0kysb4n39qpdh22q";
};
patches = [
# Fix build with Bazel >= 0.10
(fetchpatch {
url = "https://github.com/tensorflow/tensorflow/commit/6fcfab770c2672e2250e0f5686b9545d99eb7b2b.patch";
sha256 = "0p61za1mx3a7gj1s5lsps16fcw18iwnvq2b46v1kyqfgq77a12vb";
})
(fetchpatch {
url = "https://github.com/tensorflow/tensorflow/commit/3f57956725b553d196974c9ad31badeb3eabf8bb.patch";
sha256 = "11dja5gqy0qw27sc9b6yw9r0lfk8dznb32vrqqfcnypk2qmv26va";
})
];
nativeBuildInputs = [ swig which ];
buildInputs = [ python jemalloc openmpi glibcLocales numpy ]
++ lib.optionals cudaSupport [ cudatoolkit cudnn nvidia_x11 ];
preConfigure = ''
patchShebangs configure
export PYTHON_BIN_PATH="${python.interpreter}"
export PYTHON_LIB_PATH="$NIX_BUILD_TOP/site-packages"
export TF_NEED_GCP=1
export TF_NEED_HDFS=1
export TF_ENABLE_XLA=${tfFeature xlaSupport}
export CC_OPT_FLAGS=" "
# https://github.com/tensorflow/tensorflow/issues/14454
export TF_NEED_MPI=${tfFeature cudaSupport}
export TF_NEED_CUDA=${tfFeature cudaSupport}
${lib.optionalString cudaSupport ''
export CUDA_TOOLKIT_PATH=${cudatoolkit_joined}
export TF_CUDA_VERSION=${cudatoolkit.majorVersion}
export CUDNN_INSTALL_PATH=${cudnn}
export TF_CUDNN_VERSION=${cudnn.majorVersion}
export GCC_HOST_COMPILER_PATH=${cudatoolkit.cc}/bin/gcc
export TF_CUDA_COMPUTE_CAPABILITIES=${lib.concatStringsSep "," cudaCapabilities}
''}
mkdir -p "$PYTHON_LIB_PATH"
'';
NIX_LDFLAGS = lib.optionals cudaSupport [ "-lcublas" "-lcudnn" "-lcuda" "-lcudart" ];
hardeningDisable = [ "all" ];
bazelFlags = [ "--config=opt" ]
++ lib.optional sse42Support "--copt=-msse4.2"
++ lib.optional avx2Support "--copt=-mavx2"
++ lib.optional fmaSupport "--copt=-mfma"
++ lib.optional cudaSupport "--config=cuda";
bazelTarget = "//tensorflow/tools/pip_package:build_pip_package";
fetchAttrs = {
preInstall = ''
rm -rf $bazelOut/external/{bazel_tools,\@bazel_tools.marker,local_*,\@local_*}
'';
sha256 = "1nc98aqrp14q7llypcwaa0kdn9xi7r0p1mnd3vmmn1m299py33ca";
};
buildAttrs = {
preBuild = ''
patchShebangs .
find -type f -name CROSSTOOL\* -exec sed -i \
-e 's,/usr/bin/ar,${binutils.bintools}/bin/ar,g' \
{} \;
'';
installPhase = ''
sed -i 's,.*bdist_wheel.*,cp -rL . "$out"; exit 0,' bazel-bin/tensorflow/tools/pip_package/build_pip_package
bazel-bin/tensorflow/tools/pip_package/build_pip_package $PWD/dist
'';
};
dontFixup = true;
};
in buildPythonPackage rec {
pname = "tensorflow";
inherit version;
name = "${pname}-${version}";
src = pkg;
installFlags = lib.optional (!withTensorboard) "--no-dependencies";
postPatch = lib.optionalString (pythonAtLeast "3.4") ''
sed -i '/enum34/d' setup.py
'';
propagatedBuildInputs = [ numpy six protobuf absl-py ]
++ lib.optional (!isPy3k) mock
++ lib.optionals (pythonOlder "3.4") [ backports_weakref enum34 ]
++ lib.optional withTensorboard tensorflow-tensorboard;
# Actual tests are slow and impure.
checkPhase = ''
${python.interpreter} -c "import tensorflow"
'';
meta = with stdenv.lib; {
description = "Computation using data flow graphs for scalable machine learning";
homepage = http://tensorflow.org;
license = licenses.asl20;
maintainers = with maintainers; [ jyp abbradar ];
platforms = platforms.linux;
broken = !(xlaSupport -> cudaSupport);
};
}