nixpkgs/pkgs/development/python-modules/tensorflow/1/default.nix
Matthew Bauer 2a8d05627b build-bazel-package: switch hash mode to “flat”
flat hashes can be substituted through hashed-mirrors, while recursive
hashes can’t. This is especially important for Bazel since the bazel
fetch dependencies can come from multiple different methods (git,
http, ftp, etc.). To do this, we create tar archives from the
output/external directory, which is then extracted to build. All of
the Bazel hashes are all updated.
2020-05-09 13:33:26 -05:00

436 lines
13 KiB
Nix

{ stdenv, pkgs, bazel_0_26, buildBazelPackage, lib, fetchFromGitHub, fetchpatch, symlinkJoin
, addOpenGLRunpath
# Python deps
, buildPythonPackage, isPy3k, isPy27, pythonOlder, pythonAtLeast, python
# Python libraries
, numpy, tensorflow-tensorboard_1, backports_weakref, mock, enum34, absl-py
, future, setuptools, wheel, keras-preprocessing, keras-applications, google-pasta
, functools32
, opt-einsum
, termcolor, grpcio, six, wrapt, protobuf, tensorflow-estimator_1
# Common deps
, git, swig, which, binutils, glibcLocales, cython
# Common libraries
, jemalloc, openmpi, astor, gast, grpc, sqlite, openssl, jsoncpp, re2
, curl, snappy, flatbuffers, icu, double-conversion, libpng, libjpeg, giflib
# Upsteam by default includes cuda support since tensorflow 1.15. We could do
# that in nix as well. It would make some things easier and less confusing, but
# it would also make the default tensorflow package unfree. See
# https://groups.google.com/a/tensorflow.org/forum/#!topic/developers/iRCt5m4qUz0
, cudaSupport ? false, nvidia_x11 ? null, cudatoolkit ? null, cudnn ? null, nccl ? null
, mklSupport ? false, mkl ? null
# XLA without CUDA is broken
, xlaSupport ? cudaSupport
# Default from ./configure script
, cudaCapabilities ? [ "3.5" "5.2" ]
, sse42Support ? builtins.elem (stdenv.hostPlatform.platform.gcc.arch or "default") ["westmere" "sandybridge" "ivybridge" "haswell" "broadwell" "skylake" "skylake-avx512"]
, avx2Support ? builtins.elem (stdenv.hostPlatform.platform.gcc.arch or "default") [ "haswell" "broadwell" "skylake" "skylake-avx512"]
, fmaSupport ? builtins.elem (stdenv.hostPlatform.platform.gcc.arch or "default") [ "haswell" "broadwell" "skylake" "skylake-avx512"]
# Darwin deps
, Foundation, Security
}:
assert cudaSupport -> nvidia_x11 != null
&& cudatoolkit != null
&& cudnn != null;
# unsupported combination
assert ! (stdenv.isDarwin && cudaSupport);
assert mklSupport -> mkl != null;
let
withTensorboard = pythonOlder "3.6";
cudatoolkit_joined = symlinkJoin {
name = "${cudatoolkit.name}-merged";
paths = [
cudatoolkit.lib
cudatoolkit.out
# for some reason some of the required libs are in the targets/x86_64-linux
# directory; not sure why but this works around it
"${cudatoolkit}/targets/${stdenv.system}"
];
};
cudatoolkit_cc_joined = symlinkJoin {
name = "${cudatoolkit.cc.name}-merged";
paths = [
cudatoolkit.cc
binutils.bintools # for ar, dwp, nm, objcopy, objdump, strip
];
};
# Needed for _some_ system libraries, grep INCLUDEDIR.
includes_joined = symlinkJoin {
name = "tensorflow-deps-merged";
paths = [
pkgs.protobuf
jsoncpp
];
};
tfFeature = x: if x then "1" else "0";
version = "1.15.2";
variant = if cudaSupport then "-gpu" else "";
pname = "tensorflow${variant}";
pythonEnv = python.withPackages (_:
[ # python deps needed during wheel build time (not runtime, see the buildPythonPackage part for that)
numpy
keras-preprocessing
protobuf
wrapt
gast
astor
absl-py
termcolor
keras-applications
setuptools
wheel
] ++ lib.optionals (!isPy3k)
[ future
functools32
mock
]);
bazel-build = buildBazelPackage {
name = "${pname}-${version}";
bazel = bazel_0_26;
src = fetchFromGitHub {
owner = "tensorflow";
repo = "tensorflow";
rev = "v${version}";
sha256 = "1q0848drjvnaaa38dgns8knmpmkj5plzsc98j20m5ybv68s55w78";
};
patches = [
# Work around https://github.com/tensorflow/tensorflow/issues/24752
../no-saved-proto.patch
# Fixes for NixOS jsoncpp
../system-jsoncpp.patch
# https://github.com/tensorflow/tensorflow/pull/29673
(fetchpatch {
name = "fix-compile-with-cuda-and-mpi.patch";
url = "https://github.com/tensorflow/tensorflow/pull/29673/commits/498e35a3bfe38dd75cf1416a1a23c07c3b59e6af.patch";
sha256 = "1m2qmwv1ysqa61z6255xggwbq6mnxbig749bdvrhnch4zydxb4di";
})
(fetchpatch {
name = "backport-pr-18950.patch";
url = "https://github.com/tensorflow/tensorflow/commit/73640aaec2ab0234d9fff138e3c9833695570c0a.patch";
sha256 = "1n9ypbrx36fc1kc9cz5b3p9qhg15xxhq4nz6ap3hwqba535nakfz";
})
(fetchpatch {
# be compatible with gast >0.2 instead of only gast 0.2.2
name = "gast-update.patch";
url = "https://github.com/tensorflow/tensorflow/commit/85751ad6c7f5fd12c6c79545d96896cba92fa8b4.patch";
sha256 = "077cpj0kzyqxzdya1dwh8df17zfzhqn7c685hx6iskvw2979zg2n";
})
./lift-gast-restriction.patch
# cuda 10.2 does not have "-bin2c-path" option anymore
# https://github.com/tensorflow/tensorflow/issues/34429
../cuda-10.2-no-bin2c-path.patch
];
# On update, it can be useful to steal the changes from gentoo
# https://gitweb.gentoo.org/repo/gentoo.git/tree/sci-libs/tensorflow
nativeBuildInputs = [
swig which pythonEnv
] ++ lib.optional cudaSupport addOpenGLRunpath;
buildInputs = [
jemalloc
openmpi
glibcLocales
git
# libs taken from system through the TF_SYS_LIBS mechanism
# grpc
sqlite
openssl
jsoncpp
pkgs.protobuf
curl
snappy
flatbuffers
icu
double-conversion
libpng
libjpeg
giflib
re2
pkgs.lmdb
] ++ lib.optionals cudaSupport [
cudatoolkit
cudnn
nvidia_x11
] ++ lib.optionals mklSupport [
mkl
] ++ lib.optionals stdenv.isDarwin [
Foundation
Security
];
# arbitrarily set to the current latest bazel version, overly careful
TF_IGNORE_MAX_BAZEL_VERSION = true;
# Take as many libraries from the system as possible. Keep in sync with
# list of valid syslibs in
# https://github.com/tensorflow/tensorflow/blob/master/third_party/systemlibs/syslibs_configure.bzl
TF_SYSTEM_LIBS = lib.concatStringsSep "," [
"absl_py"
"astor_archive"
"boringssl"
# Not packaged in nixpkgs
# "com_github_googleapis_googleapis"
# "com_github_googlecloudplatform_google_cloud_cpp"
"com_google_protobuf"
"com_googlesource_code_re2"
"curl"
"cython"
"double_conversion"
"flatbuffers"
"gast_archive"
"gif_archive"
# Lots of errors, requires an older version
# "grpc"
"hwloc"
"icu"
"jpeg"
"jsoncpp_git"
"keras_applications_archive"
"lmdb"
"nasm"
# "nsync" # not packaged in nixpkgs
"opt_einsum_archive"
"org_sqlite"
"pasta"
"pcre"
"png_archive"
"six_archive"
"snappy"
"swig"
"termcolor_archive"
"wrapt"
"zlib_archive"
];
INCLUDEDIR = "${includes_joined}/include";
PYTHON_BIN_PATH = pythonEnv.interpreter;
TF_NEED_GCP = true;
TF_NEED_HDFS = true;
TF_ENABLE_XLA = tfFeature xlaSupport;
CC_OPT_FLAGS = " ";
# https://github.com/tensorflow/tensorflow/issues/14454
TF_NEED_MPI = tfFeature cudaSupport;
TF_NEED_CUDA = tfFeature cudaSupport;
TF_CUDA_PATHS = lib.optionalString cudaSupport "${cudatoolkit_joined},${cudnn},${nccl}";
GCC_HOST_COMPILER_PREFIX = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin";
GCC_HOST_COMPILER_PATH = lib.optionalString cudaSupport "${cudatoolkit_cc_joined}/bin/gcc";
TF_CUDA_COMPUTE_CAPABILITIES = lib.concatStringsSep "," cudaCapabilities;
postPatch = ''
# https://github.com/tensorflow/tensorflow/issues/20919
sed -i '/androidndk/d' tensorflow/lite/kernels/internal/BUILD
# Tensorboard pulls in a bunch of dependencies, some of which may
# include security vulnerabilities. So we make it optional.
# https://github.com/tensorflow/tensorflow/issues/20280#issuecomment-400230560
sed -i '/tensorboard >=/d' tensorflow/tools/pip_package/setup.py
'';
preConfigure = let
opt_flags = []
++ lib.optionals sse42Support ["-msse4.2"]
++ lib.optionals avx2Support ["-mavx2"]
++ lib.optionals fmaSupport ["-mfma"];
in ''
patchShebangs configure
# dummy ldconfig
mkdir dummy-ldconfig
echo "#!${stdenv.shell}" > dummy-ldconfig/ldconfig
chmod +x dummy-ldconfig/ldconfig
export PATH="$PWD/dummy-ldconfig:$PATH"
export PYTHON_LIB_PATH="$NIX_BUILD_TOP/site-packages"
export CC_OPT_FLAGS="${lib.concatStringsSep " " opt_flags}"
mkdir -p "$PYTHON_LIB_PATH"
# To avoid mixing Python 2 and Python 3
unset PYTHONPATH
'';
configurePhase = ''
runHook preConfigure
./configure
runHook postConfigure
'';
# FIXME: Tensorflow uses dlopen() for CUDA libraries.
NIX_LDFLAGS = lib.optionalString cudaSupport "-lcudart -lcublas -lcufft -lcurand -lcusolver -lcusparse -lcudnn";
hardeningDisable = [ "format" ];
bazelFlags = [
# temporary fixes to make the build work with bazel 0.27
"--incompatible_no_support_tools_in_action_inputs=false"
];
bazelBuildFlags = [
"--config=opt" # optimize using the flags set in the configure phase
]
++ lib.optionals (mklSupport) [ "--config=mkl" ];
bazelTarget = "//tensorflow/tools/pip_package:build_pip_package //tensorflow/tools/lib_package:libtensorflow";
fetchAttrs = {
# So that checksums don't depend on these.
TF_SYSTEM_LIBS = null;
# cudaSupport causes fetch of ncclArchive, resulting in different hashes
sha256 = if cudaSupport then
"09j57w6kc0vkfcdwr0qggy3qgrgq82kfa2jrwvvcnij4bl3wj40j"
else
"14g8z49qz7d8n1c2mcsfhr7yqpcy7mhmpm6hgmqvpgb8vm7yvwrc";
};
buildAttrs = {
outputs = [ "out" "python" ];
preBuild = ''
patchShebangs .
'';
installPhase = ''
mkdir -p "$out"
tar -xf bazel-bin/tensorflow/tools/lib_package/libtensorflow.tar.gz -C "$out"
# Write pkgconfig file.
mkdir "$out/lib/pkgconfig"
cat > "$out/lib/pkgconfig/tensorflow.pc" << EOF
Name: TensorFlow
Version: ${version}
Description: Library for computation using data flow graphs for scalable machine learning
Requires:
Libs: -L$out/lib -ltensorflow
Cflags: -I$out/include/tensorflow
EOF
# build the source code, then copy it to $python (build_pip_package
# actually builds a symlink farm so we must dereference them).
bazel-bin/tensorflow/tools/pip_package/build_pip_package --src "$PWD/dist"
cp -Lr "$PWD/dist" "$python"
'';
postFixup = lib.optionalString cudaSupport ''
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
addOpenGLRunpath "$lib"
done
'';
};
meta = with stdenv.lib; {
description = "Computation using data flow graphs for scalable machine learning";
homepage = "http://tensorflow.org";
license = licenses.asl20;
maintainers = with maintainers; [ jyp abbradar ];
platforms = with platforms; linux ++ darwin;
# The py2 build fails due to some issue importing protobuf. Possibly related to the fix in
# https://github.com/akesandgren/easybuild-easyblocks/commit/1f2e517ddfd1b00a342c6abb55aef3fd93671a2b
broken = !(xlaSupport -> cudaSupport) || !isPy3k;
};
};
in buildPythonPackage {
inherit version pname;
disabled = isPy27 || (pythonAtLeast "3.8");
src = bazel-build.python;
# Upstream has a pip hack that results in bin/tensorboard being in both tensorflow
# and the propagated input tensorflow-tensorboard, which causes environment collisions.
# Another possibility would be to have tensorboard only in the buildInputs
# https://github.com/tensorflow/tensorflow/blob/v1.7.1/tensorflow/tools/pip_package/setup.py#L79
postInstall = ''
rm $out/bin/tensorboard
'';
setupPyGlobalFlags = [ "--project_name ${pname}" ];
# tensorflow/tools/pip_package/setup.py
propagatedBuildInputs = [
absl-py
astor
gast
google-pasta
keras-applications
keras-preprocessing
numpy
six
protobuf
tensorflow-estimator_1
termcolor
wrapt
grpcio
opt-einsum
] ++ lib.optionals (!isPy3k) [
mock
future
functools32
] ++ lib.optionals (pythonOlder "3.4") [
backports_weakref enum34
] ++ lib.optionals withTensorboard [
tensorflow-tensorboard_1
];
nativeBuildInputs = lib.optional cudaSupport addOpenGLRunpath;
postFixup = lib.optionalString cudaSupport ''
find $out -type f \( -name '*.so' -or -name '*.so.*' \) | while read lib; do
addOpenGLRunpath "$lib"
done
'';
# Actual tests are slow and impure.
# TODO try to run them anyway
# TODO better test (files in tensorflow/tools/ci_build/builds/*test)
checkPhase = ''
${python.interpreter} <<EOF
# A simple "Hello world"
import tensorflow as tf
hello = tf.constant("Hello, world!")
sess = tf.Session()
sess.run(hello)
# Fit a simple model to random data
import numpy as np
np.random.seed(0)
tf.random.set_random_seed(0)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(1, activation="linear")
])
model.compile(optimizer="sgd", loss="mse")
x = np.random.uniform(size=(1,1))
y = np.random.uniform(size=(1,))
model.fit(x, y, epochs=1)
# regression test for #77626
from tensorflow.contrib import tensor_forest
EOF
'';
passthru.libtensorflow = bazel-build.out;
inherit (bazel-build) meta;
}