nixpkgs/pkgs/development/octave-modules/interval/default.nix
Karl Hallsby be699cf06b octavePackages: run update script on all packages
octavePackages.arduino: 0.7.0 -> 0.10.0

octavePackages.audio: 2.0.3 -> 2.0.5

octavePackages.bim: 1.1.5 -> 1.1.6

octavePackages.communications: 1.2.3 -> 1.2.4

octavePackages.control: 3.3.1 -> 3.4.0

octavePackages.dicom: 0.4.0 -> 0.5.1

octavePackages.ga: 0.10.2 -> 0.10.3

octavePackages.general: 2.1.1 -> 2.1.2

octavePackages.generate_html: 0.3.2 -> 0.3.3

octavePackages.image: 2.12.0 -> 2.14.0

octavePackages.instrument-control: 0.7.0 -> 0.8.0

octavePackages.interval: 3.2.0 -> 3.2.1

octavePackages.io: 2.6.3 -> 2.6.4

octavePackages.mapping: 1.4.1 -> 1.4.2

octavePackages.msh: 1.0.10 -> 1.0.12

octavePackages.nan: 3.6.0 -> 3.7.0

octavePackages.ncarray: 1.0.4 -> 1.0.5

octavePackages.netcdf: 1.0.14 -> 1.0.16

octavePackages.ocl: 1.1.1 -> 1.2.0

octavePackages.octclip: 2.0.1 -> 2.0.3

octavePackages.octproj: 2.0.1 -> 3.0.2

octavePackages.optim: 1.6.1 -> 1.6.2

octavePackages.optiminterp: 0.3.6 -> 0.3.7

octavePackages.signal: 1.4.2 -> 1.4.3

octavePackages.sockets: 1.2.1 -> 1.4.0

octavePackages.statistics: 1.4.2 -> 1.5.2

octavePackages.stk: 2.6.1 -> 2.7.0

octavePackages.strings: 1.2.0 -> 1.3.0

octavePackages.struct: 1.0.17 -> 1.0.18

octavePackages.video: 2.0.0 -> 2.0.2

octavePackages.windows: 1.6.1 -> 1.6.3

octavePackages.zeromq: 1.5.3 -> 1.5.5
2023-03-15 15:58:02 +02:00

39 lines
1.2 KiB
Nix

{ buildOctavePackage
, lib
, fetchurl
, mpfr
}:
buildOctavePackage rec {
pname = "interval";
version = "3.2.1";
src = fetchurl {
url = "mirror://sourceforge/octave/${pname}-${version}.tar.gz";
sha256 = "sha256-OOUmQnN1cTIpqz2Gpf4/WghVB0fYQgVBcG/eqQk/3Og=";
};
propagatedBuildInputs = [
mpfr
];
meta = with lib; {
homepage = "https://octave.sourceforge.io/interval/index.html";
license = licenses.gpl3Plus;
maintainers = with maintainers; [ KarlJoad ];
description = "Interval arithmetic to evaluate functions over subsets of their domain";
longDescription = ''
The interval package for real-valued interval arithmetic allows one to
evaluate functions over subsets of their domain. All results are verified,
because interval computations automatically keep track of any errors.
These concepts can be used to handle uncertainties, estimate arithmetic
errors and produce reliable results. Also it can be applied to
computer-assisted proofs, constraint programming, and verified computing.
The implementation is based on interval boundaries represented by
binary64 numbers and is conforming to IEEE Std 1788-2015, IEEE standard
for interval arithmetic.
'';
};
}