nixpkgs/pkgs/applications/science/logic/isabelle/default.nix
Sohalt 877af72161
Fixup
Co-authored-by: puzzlewolf <23097564+puzzlewolf@users.noreply.github.com>
2020-06-05 12:44:13 +02:00

82 lines
2.4 KiB
Nix

{ stdenv, fetchurl, perl, nettools, java, polyml, z3, rlwrap }:
# nettools needed for hostname
stdenv.mkDerivation rec {
pname = "isabelle";
version = "2020";
dirname = "Isabelle${version}";
src = if stdenv.isDarwin
then fetchurl {
url = "https://isabelle.in.tum.de/website-${dirname}/dist/${dirname}_macos.tar.gz";
sha256 = "1sfr5filsaqj93g5y4p9n8g5652dhr4whj25x4lifdxr2pp560xx";
}
else fetchurl {
url = "https://isabelle.in.tum.de/website-${dirname}/dist/${dirname}_linux.tar.gz";
sha256 = "1bibabhlsvf6qsjjkgxcpq3cvl1z7r8yfcgqbhbvsiv69n3gyfk3";
};
buildInputs = [ perl polyml z3 ]
++ stdenv.lib.optionals (!stdenv.isDarwin) [ nettools java ];
sourceRoot = dirname;
postPatch = ''
patchShebangs .
cat >contrib/z3*/etc/settings <<EOF
Z3_HOME=${z3}
Z3_VERSION=${z3.version}
Z3_SOLVER=${z3}/bin/z3
Z3_INSTALLED=yes
EOF
cat >contrib/polyml-*/etc/settings <<EOF
ML_SYSTEM_64=true
ML_SYSTEM=${polyml.name}
ML_PLATFORM=${stdenv.system}
ML_HOME=${polyml}/bin
ML_OPTIONS="--minheap 1000"
POLYML_HOME="\$COMPONENT"
ML_SOURCES="\$POLYML_HOME/src"
EOF
cat >contrib/jdk*/etc/settings <<EOF
ISABELLE_JAVA_PLATFORM=${stdenv.system}
ISABELLE_JDK_HOME=${java}
EOF
echo ISABELLE_LINE_EDITOR=${rlwrap}/bin/rlwrap >>etc/settings
for comp in contrib/jdk* contrib/polyml-* contrib/z3-*; do
rm -rf $comp/x86*
done
'' + (if ! stdenv.isLinux then "" else ''
arch=${if stdenv.hostPlatform.system == "x86_64-linux" then "x86_64-linux" else "x86-linux"}
for f in contrib/*/$arch/{bash_process,epclextract,eprover,nunchaku,SPASS}; do
patchelf --set-interpreter $(cat ${stdenv.cc}/nix-support/dynamic-linker) "$f"
done
'');
installPhase = ''
mkdir -p $out/bin
mv $TMP/$dirname $out
cd $out/$dirname
bin/isabelle install $out/bin
'';
meta = with stdenv.lib; {
description = "A generic proof assistant";
longDescription = ''
Isabelle is a generic proof assistant. It allows mathematical formulas
to be expressed in a formal language and provides tools for proving those
formulas in a logical calculus.
'';
homepage = "https://isabelle.in.tum.de/";
license = licenses.bsd3;
maintainers = [ maintainers.jwiegley ];
platforms = platforms.linux;
};
}