nixpkgs/pkgs/development/python-modules/torch/default.nix

420 lines
16 KiB
Nix
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{ stdenv, lib, fetchFromGitHub, fetchpatch, buildPythonPackage, python,
cudaSupport ? false, cudaPackages, magma,
useSystemNccl ? true,
MPISupport ? false, mpi,
buildDocs ? false,
# Native build inputs
cmake, util-linux, linkFarm, symlinkJoin, which, pybind11, removeReferencesTo,
pythonRelaxDepsHook,
# Build inputs
numactl,
Accelerate, CoreServices, libobjc,
# Propagated build inputs
filelock,
jinja2,
networkx,
openai-triton,
sympy,
numpy, pyyaml, cffi, click, typing-extensions,
# Unit tests
hypothesis, psutil,
# Disable MKLDNN on aarch64-darwin, it negatively impacts performance,
# this is also what official pytorch build does
mklDnnSupport ? !(stdenv.isDarwin && stdenv.isAarch64),
# virtual pkg that consistently instantiates blas across nixpkgs
# See https://github.com/NixOS/nixpkgs/pull/83888
blas,
# ninja (https://ninja-build.org) must be available to run C++ extensions tests,
ninja,
linuxHeaders_5_19,
# dependencies for torch.utils.tensorboard
pillow, six, future, tensorboard, protobuf,
isPy3k, pythonOlder,
# ROCm dependencies
rocmSupport ? false,
gpuTargets ? [ ],
openmp, rocm-core, hip, rccl, miopen, miopengemm, rocrand, rocblas,
rocfft, rocsparse, hipsparse, rocthrust, rocprim, hipcub, roctracer,
rocsolver, hipfft, hipsolver, hipblas, rocminfo, rocm-thunk, rocm-comgr,
rocm-device-libs, rocm-runtime, rocm-opencl-runtime, hipify
}:
let
inherit (lib) lists strings trivial;
inherit (cudaPackages) cudatoolkit cudaFlags cudnn nccl;
in
assert cudaSupport -> (cudaPackages.cudaMajorVersion == "11");
# confirm that cudatoolkits are sync'd across dependencies
assert !(MPISupport && cudaSupport) || mpi.cudatoolkit == cudatoolkit;
assert !cudaSupport || magma.cudaPackages.cudatoolkit == cudatoolkit;
let
setBool = v: if v then "1" else "0";
# https://github.com/pytorch/pytorch/blob/v1.13.1/torch/utils/cpp_extension.py#L1751
supportedTorchCudaCapabilities =
let
real = ["3.5" "3.7" "5.0" "5.2" "5.3" "6.0" "6.1" "6.2" "7.0" "7.2" "7.5" "8.0" "8.6"];
ptx = lists.map (x: "${x}+PTX") real;
in
real ++ ptx;
# NOTE: The lists.subtractLists function is perhaps a bit unintuitive. It subtracts the elements
# of the first list *from* the second list. That means:
# lists.subtractLists a b = b - a
# For CUDA
supportedCudaCapabilities = lists.intersectLists cudaFlags.cudaCapabilities supportedTorchCudaCapabilities;
unsupportedCudaCapabilities = lists.subtractLists supportedCudaCapabilities cudaFlags.cudaCapabilities;
# Use trivial.warnIf to print a warning if any unsupported GPU targets are specified.
gpuArchWarner = supported: unsupported:
trivial.throwIf (supported == [ ])
(
"No supported GPU targets specified. Requested GPU targets: "
+ strings.concatStringsSep ", " unsupported
)
supported;
# Create the gpuTargetString.
gpuTargetString = strings.concatStringsSep ";" (
if gpuTargets != [ ] then
# If gpuTargets is specified, it always takes priority.
gpuTargets
else if cudaSupport then
gpuArchWarner supportedCudaCapabilities unsupportedCudaCapabilities
else if rocmSupport then
hip.gpuTargets
else
throw "No GPU targets specified"
);
cudatoolkit_joined = symlinkJoin {
name = "${cudatoolkit.name}-unsplit";
# nccl is here purely for semantic grouping it could be moved to nativeBuildInputs
paths = [ cudatoolkit.out cudatoolkit.lib nccl.dev nccl.out ];
};
# Normally libcuda.so.1 is provided at runtime by nvidia-x11 via
# LD_LIBRARY_PATH=/run/opengl-driver/lib. We only use the stub
# libcuda.so from cudatoolkit for running tests, so that we dont have
# to recompile pytorch on every update to nvidia-x11 or the kernel.
cudaStub = linkFarm "cuda-stub" [{
name = "libcuda.so.1";
path = "${cudatoolkit}/lib/stubs/libcuda.so";
}];
cudaStubEnv = lib.optionalString cudaSupport
"LD_LIBRARY_PATH=${cudaStub}\${LD_LIBRARY_PATH:+:}$LD_LIBRARY_PATH ";
rocmtoolkit_joined = symlinkJoin {
name = "rocm-merged";
paths = [
rocm-core hip rccl miopen miopengemm rocrand rocblas
rocfft rocsparse hipsparse rocthrust rocprim hipcub
roctracer rocfft rocsolver hipfft hipsolver hipblas
rocminfo rocm-thunk rocm-comgr rocm-device-libs
rocm-runtime rocm-opencl-runtime hipify
];
};
in buildPythonPackage rec {
pname = "torch";
# Don't forget to update torch-bin to the same version.
version = "2.0.0";
format = "setuptools";
disabled = pythonOlder "3.8.0";
outputs = [
"out" # output standard python package
"dev" # output libtorch headers
"lib" # output libtorch libraries
];
src = fetchFromGitHub {
owner = "pytorch";
repo = "pytorch";
rev = "refs/tags/v${version}";
fetchSubmodules = true;
hash = "sha256-cSw7+AYBUcZLz3UyK/+JWWjQxKwVBXcFvBq0XAcL3tE=";
};
patches = lib.optionals (stdenv.isDarwin && stdenv.isx86_64) [
# pthreadpool added support for Grand Central Dispatch in April
# 2020. However, this relies on functionality (DISPATCH_APPLY_AUTO)
# that is available starting with macOS 10.13. However, our current
# base is 10.12. Until we upgrade, we can fall back on the older
# pthread support.
./pthreadpool-disable-gcd.diff
];
postPatch = lib.optionalString rocmSupport ''
# https://github.com/facebookincubator/gloo/pull/297
substituteInPlace third_party/gloo/cmake/Hipify.cmake \
--replace "\''${HIPIFY_COMMAND}" "python \''${HIPIFY_COMMAND}"
# Replace hard-coded rocm paths
substituteInPlace caffe2/CMakeLists.txt \
--replace "/opt/rocm" "${rocmtoolkit_joined}" \
--replace "hcc/include" "hip/include" \
--replace "rocblas/include" "include/rocblas" \
--replace "hipsparse/include" "include/hipsparse"
# Doesn't pick up the environment variable?
substituteInPlace third_party/kineto/libkineto/CMakeLists.txt \
--replace "\''$ENV{ROCM_SOURCE_DIR}" "${rocmtoolkit_joined}" \
--replace "/opt/rocm" "${rocmtoolkit_joined}"
# Strangely, this is never set in cmake
substituteInPlace cmake/public/LoadHIP.cmake \
--replace "set(ROCM_PATH \$ENV{ROCM_PATH})" \
"set(ROCM_PATH \$ENV{ROCM_PATH})''\nset(ROCM_VERSION ${lib.concatStrings (lib.intersperse "0" (lib.splitString "." hip.version))})"
''
# error: no member named 'aligned_alloc' in the global namespace; did you mean simply 'aligned_alloc'
# This lib overrided aligned_alloc hence the error message. Tltr: his function is linkable but not in header.
+ lib.optionalString (stdenv.isDarwin && lib.versionOlder stdenv.targetPlatform.darwinSdkVersion "11.0") ''
substituteInPlace third_party/pocketfft/pocketfft_hdronly.h --replace '#if __cplusplus >= 201703L
inline void *aligned_alloc(size_t align, size_t size)' '#if __cplusplus >= 201703L && 0
inline void *aligned_alloc(size_t align, size_t size)'
'';
preConfigure = lib.optionalString cudaSupport ''
export TORCH_CUDA_ARCH_LIST="${gpuTargetString}"
export CC=${cudatoolkit.cc}/bin/gcc CXX=${cudatoolkit.cc}/bin/g++
'' + lib.optionalString (cudaSupport && cudnn != null) ''
export CUDNN_INCLUDE_DIR=${cudnn}/include
'' + lib.optionalString rocmSupport ''
export ROCM_PATH=${rocmtoolkit_joined}
export ROCM_SOURCE_DIR=${rocmtoolkit_joined}
export PYTORCH_ROCM_ARCH="${gpuTargetString}"
export CMAKE_CXX_FLAGS="-I${rocmtoolkit_joined}/include -I${rocmtoolkit_joined}/include/rocblas"
python tools/amd_build/build_amd.py
'';
# Use pytorch's custom configurations
dontUseCmakeConfigure = true;
BUILD_NAMEDTENSOR = setBool true;
BUILD_DOCS = setBool buildDocs;
# We only do an imports check, so do not build tests either.
BUILD_TEST = setBool false;
# Unlike MKL, oneDNN (née MKLDNN) is FOSS, so we enable support for
# it by default. PyTorch currently uses its own vendored version
# of oneDNN through Intel iDeep.
USE_MKLDNN = setBool mklDnnSupport;
USE_MKLDNN_CBLAS = setBool mklDnnSupport;
# Avoid using pybind11 from git submodule
# Also avoids pytorch exporting the headers of pybind11
USE_SYSTEM_BIND11 = true;
preBuild = ''
export MAX_JOBS=$NIX_BUILD_CORES
${python.pythonForBuild.interpreter} setup.py build --cmake-only
${cmake}/bin/cmake build
'';
preFixup = ''
function join_by { local IFS="$1"; shift; echo "$*"; }
function strip2 {
IFS=':'
read -ra RP <<< $(patchelf --print-rpath $1)
IFS=' '
RP_NEW=$(join_by : ''${RP[@]:2})
patchelf --set-rpath \$ORIGIN:''${RP_NEW} "$1"
}
for f in $(find ''${out} -name 'libcaffe2*.so')
do
strip2 $f
done
'';
# Override the (weirdly) wrong version set by default. See
# https://github.com/NixOS/nixpkgs/pull/52437#issuecomment-449718038
# https://github.com/pytorch/pytorch/blob/v1.0.0/setup.py#L267
PYTORCH_BUILD_VERSION = version;
PYTORCH_BUILD_NUMBER = 0;
USE_SYSTEM_NCCL = setBool useSystemNccl; # don't build pytorch's third_party NCCL
# Suppress a weird warning in mkl-dnn, part of ideep in pytorch
# (upstream seems to have fixed this in the wrong place?)
# https://github.com/intel/mkl-dnn/commit/8134d346cdb7fe1695a2aa55771071d455fae0bc
# https://github.com/pytorch/pytorch/issues/22346
#
# Also of interest: pytorch ignores CXXFLAGS uses CFLAGS for both C and C++:
# https://github.com/pytorch/pytorch/blob/v1.11.0/setup.py#L17
env.NIX_CFLAGS_COMPILE = toString ((lib.optionals (blas.implementation == "mkl") [ "-Wno-error=array-bounds" ]
# Suppress gcc regression: avx512 math function raises uninitialized variable warning
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=105593
# See also: Fails to compile with GCC 12.1.0 https://github.com/pytorch/pytorch/issues/77939
++ lib.optionals (stdenv.cc.isGNU && lib.versionAtLeast stdenv.cc.version "12.0.0") [
"-Wno-error=maybe-uninitialized"
"-Wno-error=uninitialized"
]
# Since pytorch 2.0:
# gcc-12.2.0/include/c++/12.2.0/bits/new_allocator.h:158:33: error: void operator delete(void*, std::size_t)
# ... called on pointer <unknown> with nonzero offset [1, 9223372036854775800] [-Werror=free-nonheap-object]
++ lib.optionals (stdenv.cc.isGNU && lib.versions.major stdenv.cc.version == "12" ) [
"-Wno-error=free-nonheap-object"
]));
nativeBuildInputs = [
cmake
util-linux
which
ninja
pybind11
pythonRelaxDepsHook
removeReferencesTo
] ++ lib.optionals cudaSupport [ cudatoolkit_joined ]
++ lib.optionals rocmSupport [ rocmtoolkit_joined ];
buildInputs = [ blas blas.provider pybind11 ]
++ lib.optionals stdenv.isLinux [ linuxHeaders_5_19 ] # TMP: avoid "flexible array member" errors for now
++ lib.optionals cudaSupport [ cudnn nccl ]
++ lib.optionals rocmSupport [ openmp ]
++ lib.optionals (cudaSupport || rocmSupport) [ magma ]
++ lib.optionals stdenv.isLinux [ numactl ]
++ lib.optionals stdenv.isDarwin [ Accelerate CoreServices libobjc ];
propagatedBuildInputs = [
cffi
click
numpy
pyyaml
# From install_requires:
filelock
typing-extensions
sympy
networkx
jinja2
# the following are required for tensorboard support
pillow six future tensorboard protobuf
]
++ lib.optionals MPISupport [ mpi ]
++ lib.optionals rocmSupport [ rocmtoolkit_joined ]
# rocm build requires openai-triton;
# openai-triton currently requires cuda_nvcc,
# so not including it in the cpu-only build;
# torch.compile relies on openai-triton,
# so we include it for the cuda build as well
++ lib.optionals (rocmSupport || cudaSupport) [
openai-triton
];
# Tests take a long time and may be flaky, so just sanity-check imports
doCheck = false;
pythonImportsCheck = [
"torch"
];
nativeCheckInputs = [ hypothesis ninja psutil ];
checkPhase = with lib.versions; with lib.strings; concatStringsSep " " [
"runHook preCheck"
cudaStubEnv
"${python.interpreter} test/run_test.py"
"--exclude"
(concatStringsSep " " [
"utils" # utils requires git, which is not allowed in the check phase
# "dataloader" # psutils correctly finds and triggers multiprocessing, but is too sandboxed to run -- resulting in numerous errors
# ^^^^^^^^^^^^ NOTE: while test_dataloader does return errors, these are acceptable errors and do not interfere with the build
# tensorboard has acceptable failures for pytorch 1.3.x due to dependencies on tensorboard-plugins
(optionalString (majorMinor version == "1.3" ) "tensorboard")
])
"runHook postCheck"
];
pythonRemoveDeps = [
# In our dist-info the name is just "triton"
"pytorch-triton-rocm"
];
postInstall = ''
find "$out/${python.sitePackages}/torch/include" "$out/${python.sitePackages}/torch/lib" -type f -exec remove-references-to -t ${stdenv.cc} '{}' +
mkdir $dev
cp -r $out/${python.sitePackages}/torch/include $dev/include
cp -r $out/${python.sitePackages}/torch/share $dev/share
# Fix up library paths for split outputs
substituteInPlace \
$dev/share/cmake/Torch/TorchConfig.cmake \
--replace \''${TORCH_INSTALL_PREFIX}/lib "$lib/lib"
substituteInPlace \
$dev/share/cmake/Caffe2/Caffe2Targets-release.cmake \
--replace \''${_IMPORT_PREFIX}/lib "$lib/lib"
mkdir $lib
mv $out/${python.sitePackages}/torch/lib $lib/lib
ln -s $lib/lib $out/${python.sitePackages}/torch/lib
'' + lib.optionalString rocmSupport ''
substituteInPlace $dev/share/cmake/Tensorpipe/TensorpipeTargets-release.cmake \
--replace "\''${_IMPORT_PREFIX}/lib64" "$lib/lib"
substituteInPlace $dev/share/cmake/ATen/ATenConfig.cmake \
--replace "/build/source/torch/include" "$dev/include"
'';
postFixup = lib.optionalString stdenv.isDarwin ''
for f in $(ls $lib/lib/*.dylib); do
install_name_tool -id $lib/lib/$(basename $f) $f || true
done
install_name_tool -change @rpath/libshm.dylib $lib/lib/libshm.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch_python.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libtorch.dylib
install_name_tool -change @rpath/libtorch.dylib $lib/lib/libtorch.dylib $lib/lib/libshm.dylib
install_name_tool -change @rpath/libc10.dylib $lib/lib/libc10.dylib $lib/lib/libshm.dylib
'';
# Builds in 2+h with 2 cores, and ~15m with a big-parallel builder.
requiredSystemFeatures = [ "big-parallel" ];
passthru = {
inherit cudaSupport cudaPackages;
# At least for 1.10.2 `torch.fft` is unavailable unless BLAS provider is MKL. This attribute allows for easy detection of its availability.
blasProvider = blas.provider;
} // lib.optionalAttrs cudaSupport {
# NOTE: supportedCudaCapabilities isn't computed unless cudaSupport is true, so we can't use
# it in the passthru set above because a downstream package might try to access it even
# when cudaSupport is false. Better to have it missing than null or an empty list by default.
cudaCapabilities = supportedCudaCapabilities;
};
meta = with lib; {
changelog = "https://github.com/pytorch/pytorch/releases/tag/v${version}";
# keep PyTorch in the description so the package can be found under that name on search.nixos.org
description = "PyTorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration";
homepage = "https://pytorch.org/";
license = licenses.bsd3;
maintainers = with maintainers; [ teh thoughtpolice tscholak ]; # tscholak esp. for darwin-related builds
platforms = with platforms; linux ++ lib.optionals (!cudaSupport || !rocmSupport) darwin;
broken = rocmSupport && cudaSupport; # CUDA and ROCm are mutually exclusive
};
}